Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.805
Filtrar
1.
Methods Mol Biol ; 2797: 323-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570470

RESUMO

Cell line panels have proven to be an invaluable tool for investigators researching a range of topics from drug mechanism or drug sensitivity studies to disease-specific etiology. The cell lines used in these panels may range from heterogeneous tumor populations grown from primary tumor isolations to genetically engineered clonal cell lines which express specific gene isoforms. Mouse embryonic fibroblast (MEF) cells are a commonly used cell line for biological research due to their accessibility and ease of genetic manipulation. This chapter will describe the process of creating a size-sorted diploid (SSDC) clonal cell panel expressing specific RAS isoforms from a previously engineered RAS-less MEF cell line pool.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Diploide , Fibroblastos/patologia , Células Clonais , Linhagem Celular , Neoplasias/patologia , Isoformas de Proteínas
2.
Nat Commun ; 15(1): 2964, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580638

RESUMO

The high sequencing error rate has impeded the application of long noisy reads for diploid genome assembly. Most existing assemblers failed to generate high-quality phased assemblies using long noisy reads. Here, we present PECAT, a Phased Error Correction and Assembly Tool, for reconstructing diploid genomes from long noisy reads. We design a haplotype-aware error correction method that can retain heterozygote alleles while correcting sequencing errors. We combine a corrected read SNP caller and a raw read SNP caller to further improve the identification of inconsistent overlaps in the string graph. We use a grouping method to assign reads to different haplotype groups. PECAT efficiently assembles diploid genomes using Nanopore R9, PacBio CLR or Nanopore R10 reads only. PECAT generates more contiguous haplotype-specific contigs compared to other assemblers. Especially, PECAT achieves nearly haplotype-resolved assembly on B. taurus (Bison×Simmental) using Nanopore R9 reads and phase block NG50 with 59.4/58.0 Mb for HG002 using Nanopore R10 reads.


Assuntos
Diploide , Nanoporos , Alelos , Haplótipos , Heterozigoto , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Sci Adv ; 10(10): eadk9001, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457500

RESUMO

Canonical mitotic and meiotic cell divisions commence with replicated chromosomes consisting of two sister chromatids. Here, we developed and explored a model of premature cell division, where nonreplicated, G0/G1-stage somatic cell nuclei are transplanted to the metaphase cytoplasm of mouse oocytes. Subsequent cell division generates daughter cells with reduced ploidy. Unexpectedly, genome sequencing analysis revealed proper segregation of homologous chromosomes, resulting in complete haploid genomes. We observed a high occurrence of somatic genome haploidization in nuclei from inbred genetic backgrounds but not in hybrids, emphasizing the importance of sequence homology between homologs. These findings suggest that premature cell division relies on mechanisms similar to meiosis I, where genome haploidization is facilitated by homologous chromosome interactions, recognition, and pairing. Unlike meiosis, no evidence of recombination between somatic cell homologs was detected. Our study offers an alternative in vitro gametogenesis approach by directly reprogramming diploid somatic cells into haploid oocytes.


Assuntos
Diploide , Meiose , Animais , Camundongos , Haploidia , Meiose/genética , Núcleo Celular/genética , Cromátides
4.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427813

RESUMO

Aneuploidy is common in eukaryotes, often leading to decreased fitness. However, evidence from fungi and human tumur cells suggests that specific aneuploidies can be beneficial under stressful conditions and facilitate adaptation. In a previous evolutionary experiment with yeast, populations evolving under heat stress became aneuploid, only to later revert to euploidy after beneficial mutations accumulated. It was therefore suggested that aneuploidy is a "stepping stone" on the path to adaptation. Here, we test this hypothesis. We use Bayesian inference to fit an evolutionary model with both aneuploidy and mutation to the experimental results. We then predict the genotype frequency dynamics during the experiment, demonstrating that most of the evolved euploid population likely did not descend from aneuploid cells, but rather from the euploid wild-type population. Our model shows how the beneficial mutation supply-the product of population size and beneficial mutation rate-determines the evolutionary dynamics: with low supply, much of the evolved population descends from aneuploid cells; but with high supply, beneficial mutations are generated fast enough to outcompete aneuploidy due to its inherent fitness cost. Our results suggest that despite its potential fitness benefits under stress, aneuploidy can be an evolutionary "diversion" rather than a "stepping stone": it can delay, rather than facilitate, the adaptation of the population, and cells that become aneuploid may leave less descendants compared to cells that remain diploid.


Assuntos
Aneuploidia , Fungos , Humanos , Teorema de Bayes , Diploide
5.
Plant Cell Rep ; 43(4): 85, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453711

RESUMO

KEY MESSAGE: The shock produced by the allopolyploidization process on a potato interspecific diploid hybrid displays a non-random remobilization of the small RNAs profile on a variety of genomic features. Allopolyploidy, a complex process involving interspecific hybridization and whole genome duplication, significantly impacts plant evolution, leading to the emergence of novel phenotypes. Polyploids often present phenotypic nuances that enhance adaptability, enabling them to compete better and occasionally to colonize new habitats. Whole-genome duplication represents a genomic "shock" that can trigger genetic and epigenetic changes that yield novel expression patterns. In this work, we investigate the polyploidization effect on a diploid interspecific hybrid obtained through the cross between the cultivated potato Solanum tuberosum and the wild potato Solanum kurtzianum, by assessing the small RNAs (sRNAs) profile of the parental diploid hybrid and its derived allopolyploid. Small RNAs are key components of the epigenetic mechanisms involved in silencing by RNA-directed DNA Methylation (RdDM). A sRNA sequencing (sRNA-Seq) analysis was performed to individually profile the 21 to 22 nucleotide (21 to 22-nt) and 24-nt sRNA size classes due to their unique mechanism of biogenesis and mode of function. The composition and distribution of different genomic features and differentially accumulated (DA) sRNAs were evaluated throughout the potato genome. We selected a subset of genes associated with DA sRNAs for messenger RNA (mRNA) expression analysis to assess potential impacts on the transcriptome. Interestingly, we noted that 24-nt DA sRNAs that exclusively mapped to exons were correlated with differentially expressed mRNAs between genotypes, while this behavior was not observed when 24-nt DA sRNAs were mapped to intronic regions. These findings collectively emphasize the nonstochastic nature of sRNA remobilization in response to the genomic shock induced by allopolyploidization.


Assuntos
Pequeno RNA não Traduzido , Solanum tuberosum , Solanum tuberosum/genética , Diploide , Genoma , Genômica , RNA Mensageiro , Pequeno RNA não Traduzido/genética
6.
Nat Methods ; 21(4): 574-583, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459383

RESUMO

Draft genomes generated from Oxford Nanopore Technologies (ONT) long reads are known to have a higher error rate. Although existing genome polishers can enhance their quality, the error rate (including mismatches, indels and switching errors between paternal and maternal haplotypes) can be significant. Here, we develop two polishers, hypo-short and hypo-hybrid to address this issue. Hypo-short utilizes Illumina short reads to polish an ONT-based draft assembly, resulting in a high-quality assembly with low error rates and switching errors. Expanding on this, hypo-hybrid incorporates ONT long reads to further refine the assembly into a diploid representation. Leveraging on hypo-hybrid, we have created a diploid genome assembly pipeline called hypo-assembler. Hypo-assembler automates the generation of highly accurate, contiguous and nearly complete diploid assemblies using ONT long reads, Illumina short reads and optionally Hi-C reads. Notably, our solution even allows for the production of telomere-to-telomere diploid genomes with additional manual steps. As a proof of concept, we successfully assembled a fully phased telomere-to-telomere diploid genome of HG00733, achieving a quality value exceeding 50.


Assuntos
Nanoporos , Diploide , Haploidia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Telômero/genética , Análise de Sequência de DNA/métodos
8.
Mol Genet Genomics ; 299(1): 30, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472439

RESUMO

Fusarium wilt, caused by the soilborne fungus Fusarium oxysporum f. sp. vasinfectum (FOV), is a devastating disease affecting cotton (Gossypium spp.) worldwide. Understanding the genetic basis of resistance in diploid cotton and successfully transferring the resistance to tetraploid Upland cotton (G. hirsutum) are crucial for developing resistant cotton cultivars. Although numerous studies have been conducted to investigate the genetic basis of Fusarium wilt in tetraploid cotton, little research has been conducted on diploid species. In this study, an association mapping panel consisting of 246 accessions of G. arboreum, was used to identify chromosomal regions for FOV race 4 (FOV4) resistance based on foliar disease severity ratings in four greenhouse tests. Through a genome-wide association study (GWAS) based on 7,009 single nucleotide polymorphic (SNP) markers, 24 FOV4 resistance QTLs, including three major QTLs on chromosomes A04, A06, and A11, were detected. A validation panel consisting of 97 diploid cotton accessions was employed, confirming the presence of several QTLs. Evaluation of an introgressed BC2F7 population derived from G. hirsutum/G. aridum/G. arboreum showed significant differences in disease incidence and mortality rate, as compared to susceptible and resistant controls, suggesting that the resistance in G. arboreum and/or G. aridum was transferred into Upland cotton for the first time. The identification of novel major resistance QTLs, along with the transfer of resistance from the diploid species, expands our understanding of the genomic regions involved in conferring resistance to FOV4 and contributes to the development of resilient Upland cotton cultivars.


Assuntos
Fusarium , Gossypium , Gossypium/genética , Fusarium/genética , Estudo de Associação Genômica Ampla , Tetraploidia , Diploide , Doenças das Plantas/genética
9.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474246

RESUMO

The DA1-like gene family plays a crucial role in regulating seed and organ size in plants. The DA1 gene family has been identified in several species but has not yet been reported in sweet potatoes. In this study, nine, eleven, and seven DA1s were identified in cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid wild relatives, I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively. The DA1 genes were classified into three subgroups based on their phylogenetic relationships with Arabidopsis thaliana and Oryza sativa (rice). Their protein physiological properties, chromosomal localization, phylogenetic relationships, gene structure, promoter cis-elements, and expression patterns were systematically analyzed. The qRT-PCR results showed that the expression levels of four genes, IbDA1-1, IbDA1-3, IbDA1-6, and IbDA1-7, were higher in the sweet potato leaves than in the roots, fiber roots, and stems. In our study, we provide a comprehensive comparison and further the knowledge of DA1-like genes in sweet potatoes, and provide a theoretical basis for functional studies.


Assuntos
Ipomoea batatas , Ipomoea batatas/genética , Filogenia , Diploide , Genoma de Planta , Genes de Plantas , Regulação da Expressão Gênica de Plantas
10.
Nat Commun ; 15(1): 2447, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503752

RESUMO

Long-read sequencing offers long contiguous DNA fragments, facilitating diploid genome assembly and structural variant (SV) detection. Efficient and robust algorithms for SV identification are crucial with increasing data availability. Alignment-based methods, favored for their computational efficiency and lower coverage requirements, are prominent. Alternative approaches, relying solely on available reads for de novo genome assembly and employing assembly-based tools for SV detection via comparison to a reference genome, demand significantly more computational resources. However, the lack of comprehensive benchmarking constrains our comprehension and hampers further algorithm development. Here we systematically compare 14 read alignment-based SV calling methods (including 4 deep learning-based methods and 1 hybrid method), and 4 assembly-based SV calling methods, alongside 4 upstream aligners and 7 assemblers. Assembly-based tools excel in detecting large SVs, especially insertions, and exhibit robustness to evaluation parameter changes and coverage fluctuations. Conversely, alignment-based tools demonstrate superior genotyping accuracy at low sequencing coverage (5-10×) and excel in detecting complex SVs, like translocations, inversions, and duplications. Our evaluation provides performance insights, highlighting the absence of a universally superior tool. We furnish guidelines across 31 criteria combinations, aiding users in selecting the most suitable tools for diverse scenarios and offering directions for further method development.


Assuntos
Algoritmos , Genoma Humano , Humanos , Análise de Sequência de DNA/métodos , Diploide , Benchmarking , Sequenciamento de Nucleotídeos em Larga Escala
11.
Am J Bot ; 111(3): e16305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517199

RESUMO

PREMISE: The western North American fern genus Pentagramma (Pteridaceae) is characterized by complex patterns of ploidy variation, an understanding of which is critical to comprehending both the evolutionary processes within the genus and its current diversity. METHODS: We undertook a cytogeographic study across the range of the genus, using a combination of chromosome counts and flow cytometry to infer ploidy level. Bioclimatic variables and elevation were used to compare niches. RESULTS: We found that diploids and tetraploids are common and widespread, and triploids are rare and sporadic; in contrast with genome size inferences in earlier studies, no hexaploids were found. Diploids and tetraploids show different geographic ranges: only tetraploids were found in the northernmost portion of the range (Washington, Oregon, and British Columbia) and only diploids were found in the Sierra Nevada of California. Diploid, triploid, and tetraploid cytotypes were found to co-occur in relatively few localities: in the southern (San Diego County, California) and desert Southwest (Arizona) parts of the range, and along the Pacific Coast of California. CONCLUSIONS: Tetraploids occupy a wider bioclimatic niche than diploids both within P. triangularis and at the genus-wide scale. It is unknown whether the wider niche of tetraploids is due to their expansion upon the diploid niche, if diploids have contracted their niche due to competition or changing abiotic conditions, or if this wider niche occupancy is due to multiple origins of tetraploids.


Assuntos
Gleiquênias , Pteridaceae , Diploide , Tetraploidia , Poliploidia
12.
Sci Rep ; 14(1): 6876, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519579

RESUMO

Hydatidiform moles are abnormal conceptuses. Many hydatidiform moles are diploid androgenetic, and of these, most are homozygous in all loci. Additionally, most hydatidiform moles are euploid. Using Single Nucleotide Polymorphism (SNP) array analysis, in two studies a higher frequency of aneuploidy was observed in diploid androgenetic heterozygous conceptuses, than in their homozygous counterparts. In the Danish Mole Project, we analyze conceptuses suspected to be hydatidiform moles due to the clinical presentation, using karyotyping and Short Tandem Repeat (STR) analysis. Among 278 diploid androgenetic conceptuses, 226 were homozygous in all loci and 52 (18.7%) were heterozygous in several loci. Among 142 triploid diandric conceptuses, 141 were heterozygous for paternally inherited alleles in several loci. Here we show that the frequencies of aneuploidy in diploid androgenetic heterozygous and triploid diandric heterozygous conceptuses were significantly higher than the frequency of aneuploidy in diploid androgenetic homozygous conceptuses. In diploid androgenetic and triploid diandric conceptuses that are heterozygous for paternally inherited alleles, the two paternally inherited sets of genomes originate in two spermatozoa. Each spermatozoon provides one pair of centrioles to the zygote. The presence of two pairs of centrioles may cause an increased risk of aneuploidy.


Assuntos
Mola Hidatiforme , Neoplasias Uterinas , Masculino , Gravidez , Feminino , Humanos , Diploide , Triploidia , Mola Hidatiforme/genética , Heterozigoto , Aneuploidia
13.
14.
Genome Biol ; 25(1): 63, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439049

RESUMO

BACKGROUND: Centromeres are critical for maintaining genomic stability in eukaryotes, and their turnover shapes genome architectures and drives karyotype evolution. However, the co-evolution of centromeres from different species in allopolyploids over millions of years remains largely unknown. RESULTS: Here, we generate three near-complete genome assemblies, a tetraploid Brachypodium hybridum and its two diploid ancestors, Brachypodium distachyon and Brachypodium stacei. We detect high degrees of sequence, structural, and epigenetic variations of centromeres at base-pair resolution between closely related Brachypodium genomes, indicating the appearance and accumulation of species-specific centromere repeats from a common origin during evolution. We also find that centromere homogenization is accompanied by local satellite repeats bursting and retrotransposon purging, and the frequency of retrotransposon invasions drives the degree of interspecies centromere diversification. We further investigate the dynamics of centromeres during alloploidization process, and find that dramatic genetics and epigenetics architecture variations are associated with the turnover of centromeres between homologous chromosomal pairs from diploid to tetraploid. Additionally, our pangenomes analysis reveals the ongoing variations of satellite repeats and stable evolutionary homeostasis within centromeres among individuals of each Brachypodium genome with different polyploidy levels. CONCLUSIONS: Our results provide unprecedented information on the genomic, epigenomic, and functional diversity of highly repetitive DNA between closely related species and their allopolyploid genomes at both coarse and fine scale.


Assuntos
Brachypodium , Diploide , Humanos , Tetraploidia , Brachypodium/genética , Retroelementos , Centrômero/genética
15.
PLoS One ; 19(3): e0295409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451989

RESUMO

Macroalgal populations often consist of free-living haploid (gametophyte) and diploid (sporophyte) stages. Various ecological studies have been conducted to examine the demographic diversity of haploid-diploid populations with regard to the dominant stage. Here, I relaxed the assumption of classical research that the life history parameters of haploids and diploids are identical and developed a generalized haploid-diploid model that explicitly accounts for population density dependence and asexual reproduction. Analysis of this model yielded an exact solution for the abundance ratio of haploids to diploids in a population in which the ratio is determined by the balance of four demographic forces: sexual reproduction by haploids, sexual reproduction by diploids, asexual reproduction by haploids, and asexual reproduction by diploids. Furthermore, the persistence of a haploid-diploid population and its total biomass are shown to be determined by the basic reproductive number (R0), which is shown to be a function of these four demographic forces. When R0 is greater than one, the haploid-diploid population stably persists, and the ploidy ratio obtained by the analytical solution is realized.


Assuntos
Diploide , Células Germinativas Vegetais , Haploidia , Reprodução/genética , Densidade Demográfica
16.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396636

RESUMO

Organisms with three or more complete sets of chromosomes are designated as polyploids. Polyploidy serves as a crucial pathway in biological evolution and enriches species diversity, which is demonstrated to have significant advantages in coping with both biotic stressors (such as diseases and pests) and abiotic stressors (like extreme temperatures, drought, and salinity), particularly in the context of ongoing global climate deterioration, increased agrochemical use, and industrialization. Polyploid cultivars have been developed to achieve higher yields and improved product quality. Numerous studies have shown that polyploids exhibit substantial enhancements in cell size and structure, physiological and biochemical traits, gene expression, and epigenetic modifications compared to their diploid counterparts. However, some research also suggested that increased stress tolerance might not always be associated with polyploidy. Therefore, a more comprehensive and detailed investigation is essential to complete the underlying stress tolerance mechanisms of polyploids. Thus, this review summarizes the mechanism of polyploid formation, the polyploid biochemical tolerance mechanism of abiotic and biotic stressors, and molecular regulatory networks that confer polyploidy stress tolerance, which can shed light on the theoretical foundation for future research.


Assuntos
Evolução Biológica , Poliploidia , Humanos , Fenótipo , Diploide
17.
mBio ; 15(3): e0337923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38329358

RESUMO

In contrast to the canonical view that genomes cycle only between haploid and diploid states, many eukaryotes have dynamic genomes that change content throughout an individual's life cycle. However, the few detailed studies of microeukaryotic life cycles render our understanding of eukaryotic genome dynamism incomplete. Foraminifera (Rhizaria) are an ecologically important, yet understudied, clade of microbial eukaryotes with complex life cycles that include changes in ploidy and genome organization. Here, we apply fluorescence microscopy and image analysis techniques to over 2,800 nuclei in 110 cells to characterize the life cycle of Allogromia laticollaris strain Cold Spring Harbor (CSH), one of few cultivable foraminifera species. We show that haploidy and diploidy are brief moments in the A. laticollaris life cycle and that A. laticollaris nuclei endoreplicate up to 12,000 times the haploid genome size. We find that A. laticollaris reorganizes a highly endoreplicated nucleus into thousands of haploid genomes through a non-canonical mechanism called Zerfall, in which the nuclear envelope degrades and extrudes chromatin into the cytoplasm. Based on these findings, along with changes in nuclear architecture across the life cycle, we believe that A. laticollaris uses spatio-temporal mechanisms to delineate germline and somatic DNA within a single nucleus. The analyses here extend our understanding of the genome dynamics across the eukaryotic tree of life.IMPORTANCEIn traditional depictions of eukaryotes (i.e., cells with nuclei), life cycles alternate only between haploid and diploid phases, overlooking studies of diverse microeukaryotic lineages (e.g., amoebae, ciliates, and flagellates) that show dramatic variation in DNA content throughout their life cycles. Endoreplication of genomes enables cells to grow to large sizes and perhaps to also respond to changes in their environments. Few microeukaryotic life cycles have been studied in detail, which limits our understanding of how eukaryotes regulate and transmit their DNA across generations. Here, we use microscopy to study the life cycle of Allogromia laticollaris strain CSH, an early-diverging lineage within the Foraminifera (an ancient clade of predominantly marine amoebae). We show that DNA content changes significantly throughout their life cycle and further describe an unusual process called Zerfall, by which this species reorganizes a large nucleus with up to 12,000 genome copies into hundreds of small gametic nuclei, each with a single haploid genome. Our results are consistent with the idea that all eukaryotes demarcate germline DNA to pass on to offspring amidst more flexible somatic DNA and extend the known diversity of eukaryotic life cycles.


Assuntos
Foraminíferos , Genoma , Diploide , Haploidia , DNA
18.
PLoS One ; 19(2): e0295006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306337

RESUMO

Oat crown rust, caused by Puccinia coronata Corda f. sp. avenae Eriks. (Pca), is a major biotic impediment to global oat production. Crown rust resistance has been described in oat diploid species A. strigosa accession PI 258731 and resistance from this accession has been successfully introgressed into hexaploid A. sativa germplasm. The current study focuses on 1) mapping the location of QTL containing resistance and evaluating the number of quantitative trait loci (QTL) conditioning resistance in PI 258731; 2) understanding the relationship between the original genomic location in A. strigosa and the location of the introgression in the A. sativa genome; 3) identifying molecular markers tightly linked with PI 258731 resistance loci that could be used for marker assisted selection and detection of this resistance in diverse A. strigosa accessions. To achieve this, A. strigosa accessions, PI 258731 and PI 573582 were crossed to produce 168 F5:6 recombinant inbred lines (RILs) through single seed descent. Parents and RILs were genotyped with the 6K Illumina SNP array which generated 168 segregating SNPs. Seedling reactions to two isolates of Pca (races TTTG, QTRG) were conditioned by two genes (0.6 cM apart) in this population. Linkage mapping placed these two resistant loci to 7.7 (QTRG) to 8 (TTTG) cM region on LG7. Field reaction data was used for QTL analysis and the results of interval mapping (MIM) revealed a major QTL (QPc.FD-AS-AA4) for field resistance. SNP marker assays were developed and tested in 125 diverse A. strigosa accessions that were rated for crown rust resistance in Baton Rouge, LA and Gainesville, FL and as seedlings against races TTTG and QTRG. Our data proposed SNP marker GMI_ES17_c6425_188 as a candidate for use in marker-assisted selection, in addition to the marker GMI_ES02_c37788_255 suggested by Rine's group, which provides an additional tool in facilitating the utilization of this gene in oat breeding programs.


Assuntos
Avena , Basidiomycota , Avena/genética , Diploide , Resistência à Doença/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Plântula/genética
19.
Proc Biol Sci ; 291(2016): 20232351, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351800

RESUMO

In bryophytes that alternate between haploid gametophytes and diploid sporophytes through sexual reproduction, sporophytes are often attached to and nurtured on the female gametophyte. A similar phenomenon is seen in Florideophyceae (a group of red algae). These systems in which a gametophyte (mother) invests nutrients in sporophytes (offspring) are ideal for studying the evolution of 'parental care' in non-animal organisms. Here, we propose a model of a haploid-diploid life cycle and examine the evolution of maternal investment in sporophytes focusing on two effects: the degree of paternal or maternal control of investment and the number of sporophytes. We find that when the female dominantly controls the investment, the evolutionarily stable level of investment is that which maximizes the expected reproductive success of the female gametophyte. The genomic conflict between maternal and paternal alleles complicates the evolutionary outcome; however, a greater male allelic effect and a higher number of sporophytes favour a higher energy investment, which may lead to evolutionary branching or run-away escalation of the investment level. This suggests that the selfishness of the paternal gene is the evolutionary driver of parental care and that complex structures such as fusion cells in red algae may have evolved to suppress it.


Assuntos
Briófitas , Diploide , Haploidia , Plantas , Reprodução/genética
20.
J Mol Biol ; 436(8): 168505, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423454

RESUMO

Skp2, the substrate recognition component of the SCFSkp2 ubiquitin ligase, has been implicated in the targeted destruction of a number of key cell cycle regulators and the promotion of S-phase. One of its critical targets is the Cyclin dependent kinase (Cdk) inhibitor p27, and indeed the overexpression of Skp2 in a number of cancers is directly correlated with the premature degradation of p27. Skp2 was first identified as a protein that interacts with Cyclin A in transformed cells, but its role in this complex has remained unclear. In this paper, we demonstrate that Skp2 interacts with Cyclin A in Drosophila and is required to maintain Cyclin A levels and permit mitotic entry. Failure of mitotic entry in Skp2 mutant cells results in polyploidy. If these cells enter mitosis again they are unable to properly segregate their chromosomes, leading to checkpoint dependent cell cycle arrest or apoptosis. Thus, Skp2 is required for mitosis and for maintaining diploidy and genome stability.


Assuntos
Proteínas de Ciclo Celular , Ciclinas , Ciclinas/genética , Proteínas de Ciclo Celular/metabolismo , Diploide , Pontos de Checagem do Ciclo Celular/genética , Ciclina A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...